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Abstract. The paper considers nonlinear vibrations of a solid body mounted on 
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 1. Introduction 

    Issues related to the dynamic damping of mechanical systems’ vibrations are 

widely used in the dynamics of machines [1, p.254; 2, p. 129]. Passive methods of 

vibration reduction are especially effective for objects subject to sustained periodic 

external influences. There are known developments related to the creation of 

complex systems for reducing vibrations with several perturbations [3, p.187; 4, 

p.111]. Of particular interest are theoretical approaches to solving problems of 

vibration reduction based on structural methods of mathematical modeling [5,p. 

173; 6,p. 138], in which a mechanical oscillatory system is interpreted as some 

kind of dynamic automatic control system. In this case, the structural scheme of 

the system acts as a structural analogue of the original mathematical model 

obtained in the form of a system of differential equations [7, p.174; 8, p.307]. The 

object of protection against vibration effects in the structural scheme of a vibration-

proof system can be distinguished by structural transformations as an integrating 

link of the second order when bringing the structure of a mechanical oscillatory 

system (or vibration-proof system) to a scheme consisting of a protection object 

and a negative feedback circuit covering it. In this case, it becomes possible to 

determine the modes of dynamic damping, based on the properties of the transfer 

functions of feedback circuits [9, p.136; 10, p.178]. In the physical sense, the 

negative feedback relative to the object of protection in the structural model 
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generically reflects the elastic properties of the vibration protection system or the 

reduced stiffness, depending on the frequency of external action.  

 

2. Methods 

2.1. Problem statement and solution methods 

Consider the vibrations of a solid body mounted on viscoelastic supports. The 

mechanical system shown in Fig.1, i.e., a rigid body 1, is mounted on a rigid plate 

2 with the help of viscoelastic supports (springs) 3. We determine the amplitude-

frequency characteristics of various points of the body for a given harmonic 

oscillation law of the base plate. The equations of motion of the system are 

obtained from the Lagrange equations Type II for a system with elastic supports 

by replacing the stiffness of the supports with integral operators [6,p.245]:
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where хc , c  — stiffness of the supports in the direction of the two generalized 

coordinates; I — moment of inertia, хR  and R  — kernels relaxation in directions  

x and  ; m — body weight. 

The generating system (1) at 10, 0 = =  has frequencies 
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Let’s make a transition to normal coordinates for (1), presenting the 

solution by embedding in normal forms: 

11 1 12 2 21 1 22 2, . (3)x a f a f a f a f= + = +  

We satisfy the oscillation equations (1) at 10, 0 = =  with the functions  
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where 11 12 21 22, , ,a a a a −  the desired amplitudes. 

Substituting (4) into (1), we obtain auxiliary relations 
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allowing to determine the amplitudes of 11 12 21 22, , ,a a a a −  in the form of 
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Thus, the system (1), taking into account (3) and (5), takes the form 
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Periodic solutions (7) and (8), according to [7, p.174; 8, p.482], we express as 

follows: 
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Substituting (9) and (10), respectively, into equations (7) and (8), we obtain a 

system of equations [11,p.169] 
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Let the functions ( )1 1 2,F f f  and ( )2 1 2,F f f  be representable as uniformly convergent 

Fourier series: 
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The solution of equations (7), (8) under the conditions of ( )1 1 2, 0F f f =  and 

( )2 1 2, 0F f f =  will be: 
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The series (13) converges absolutely and uniformly under the condition of 0 1.cR   

Function (13) does not contain arbitrary constants and characterizes forced oscillations 

in the presence of periodic disturbances (12). Consider nonlinear integro-differential 

equations (7-8), presenting them in the following form: 
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here 1nf  and 2nf - the desired functions; −  known constant; ( )1 1 2,nF f f  and ( )2 1 2,nF f f −  

known functions;  −   dimensionless positive parameter. 

 We assume that the kernel of R satisfies the condition [12, p.3; 13, p.5] 
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0 1, (17)R d 

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and the functions ( )1 1 2,nF f f  and ( )2 1 2,nF f f  are representable by an infinite 

series (12). 

We will look for the periodic solution of equations (16) in the form of 

infinite series: 
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moreover, the terms of this series are solutions of linear equations 
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Consequently, linear equations (19) are the result of applying the method of 

successive approximations to the original nonlinear equation (16) [10,p. 339]. Since 

the right-hand sides of equation (19) are periodic functions of time, we find its solution 

in the form (13), while the right-hand sides (19) should be decomposed into a Fourier 

series. 

 

 
 

Figure 1. Calculation scheme: 1-solid, 2-base, 3-spring 
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Equations (19) can be transformed in the following sequence 
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3. Results and analysis 

Estimates of periodic solutions of equations (20) are given in [12, p.8].  

When solving specific tasks, the following mechanical characteristics of the 

body were adopted: m=1; l=0.5; I=0.1. The relaxation core is taken as 
( )
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t s
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R t s

t s


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Two variants of kernel parameters (21) are considered: 

1) 0,1; 0.078; 0.05A = = =  

2) 0,1; 0.048; 0.05A = = =  

The results found at low and high viscosities are qualitatively the same, 

differing only by significantly large values of amplitudes at low viscosity. 

Therefore, the analysis of the obtained solutions is given only for high 

viscosity. 

 
Figure 2. Change in the amplitude of displacements from the frequency of 

external loads: 1. А=0.078; 2. А=0.048; 3. А=0.030; 4. А=0.020; А=0.015 

 

Figure 2 shows the results of calculations for nonlinear problems. 
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According to numerical results, the amplitude value for a nonlinear problem is 

3-4% greater than for a linear one.  

 

4. Conclusions 

The paper presents a method for solving the problem of nonlinear 

oscillations of a mechanical system with two degrees of freedom. Based on the 

numerical results obtained, it is found that the amplitude value for a nonlinear 

problem is 3-4% greater than for a linear one.  
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